ГИДРОГЕОЛОГИЯ (от греч. hydor — вода и геология * а. hydrogeology, geohydrology; н. Hydrogeologie; ф. hydrogeologie; и. hidrogeologia) — наука о , изучающая их состав, свойства, формирование, распространение, движение и взаимодействие с окружающей средой ( и поверхностными водами). Основные разделы гидрогеологии: общая гидрогеология; ; динамика подземных вод; ; нефтяная гидрогеология; мелиоративная гидрогеология; гидрогеохимия; учение о поисках, разведке и оценке запасов подземных вод; учение о , и промышленных водах. Гидрогеология тесно связана с , гидрологией, метеорологией и другими науками о . При гидрогеологических исследованиях применяют геологические, геофизические, химические, физико-математические и другие методы.

Историческая справка. Сведения о подземных водах известны с глубокой древности. Колодцы глубиной несколько десятков метров известны за 2-3 тысячи лет до н.э. в Египте, Средней Азии, и других странах. К 1-му тысячелетию до н.э. относится начало представлений о свойствах природных вод, их происхождении, условиях накопления и круговороте воды на Земле (Фалес, Аристотель, Лукреций). Изучению подземных вод способствовали работы по водоснабжению, устройству каптажных сооружений, добыче . В эпоху возрождения и позднее изучению подземных вод посвящены работы Агриколы, Палисси и др.

В России первые научные представления о подземных водах были даны в 18 в. , о на рубеже 18-19 вв. — . Как самостоятельная отрасль естественных наук гидрогеология начала формироваться в конце 19 — начале 20 вв. Крупную роль в становлении гидрогеологии сыграли , и др. Основоположниками советской школы являются , Г. Н. Каменский, С. Н. Никитин, Н. Ф. Погребов, П. И. Бутов, А. Ф. Лебедев, Н. Н. Славянов, О. К. Ланге, Б. Л. Личков, А. Н. Семихатов и другие, разработавшие основные положения общей и региональной гидрогеологии. Для развития динамики подземных вод важную роль сыграли исследования движения грунтовых вод в пластах, движения подземных вод к водосборным сооружениям (Н. Е. Жуковский, Н. Н. Павловский, Г. Н. Каменский); для разработки методики гидрогеологических разведочных работ большое значение в этот период имели труды Г. Н. Каменского, М. Е. Альтовского, Н. А. Плотникова, С. В. Троянского.

В 30-40-х гг. значительный прогресс достигнут в развитии гидрогеологии горнорудных районов. В эти же годы формируется учение о режиме и балансе подземных вод, определяются закономерности их изменения под влиянием климата, гидрологии, разрабатываются методы изучения режима грунтовых вод в целом, и особенно для орошаемых районов (М. М. Крылов, М. А. Вевиоровская, А. А. Коноплянцев); установлены закономерности формирования термальных, минеральных вод, промышленных рассолов, открыты гидротермальные бассейны подземных вод (Н. Н. Славянов, Ф. А. Макаренко, Т. П. Афанасьев, А. М. Овчинников и др.). Создаётся учение о провинциях минеральных вод (Н. И. Толстихин, А. М. Овчинников, В. В. Иванов, Н. А. Маринов); формируется нефтяная гидрогеология. Разрабатывается учение о подземных водах мёрзлой зоны — криогидрогеология (А. В. Львов, М. И. Сумгин, Н. И. Толстихин). Развиваются общая, поисковая гидрогеохимия, радиогидрохимия (В. И. Вернадский, О. А. Алекин, М. Г. Валяшко, В. С. Самарина и др.). Установлены новые методы поиска подземных вод, эффективные способы их разведки. В конце 40-х гг. существенные результаты достигнуты в разработке научных основ оценки ресурсов подземных вод. Предложены их классификации, методы картирования, обоснования использования (Н. А. Плотников, Ф. М. Бочевер, М. Е. Альтовский, Н. Н. Биндеман, У. М. Ахмедсафин и др.).

В 50-70-х гг. продолжаются фундаментальные и прикладные исследования по гидрогеологии , борьбе с водопритоками в , водообеспечению рудников (Д. И. Щёголев, С. В. Троянский, Н. И. Плотников, М. С. Газизов, П. П. Климентов и др.). Разрабатывается теория перетекания подземных вод через слабопроницаемые отложения, послужившая основой для опытно-фильтрационных исследований (Н. К. Гиринский, А. Н. Митяев и др.). В связи с изучением закономерностей формирования и размещения подземных вод выполнены и обобщены крупные региональные гидрогеологические исследования (Ф. П. Саваренский, Г. Н. Каменский, О. К. Ланге, Н. И. Толстихин, В. Н. Кунин, Г. В. Богомолов, Н. В. Роговская, А. Е. Бабинец и др.), составлены разномасштабные сводные и комплексные (И. К. Зайцев, Б. И. Куделин, И. В. Гармонов, Н. А. Маринов, М. Р. Никитин, И. С. Зекцер и др.). Проведена впервые в гидрогеологической практике типизация месторождений подземных вод, предложенная Н. И. Плотниковым (1959) и усовершенствованная в дальнейшем Л. С. Язвиным и Б. В. Боревским. В начале 60-х гг. созданы принципиально новые методы оценки эксплуатации запасов, основанные на теориях упругого режима и неустановившейся фильтрации (Ф. М. Бочевер, Н. Н. Биндеман, В. Н. Щелкачёв и др.). Разработаны новые принципы прогнозирования, выявления, картирования, региональной оценки водных ресурсов недр аридных районов (У. М. Ахмедсафин и др.).

Значительные успехи достигнуты в исследовании гидрогеологических процессов с применением методов математического моделирования (В. М. Шестаков, И. Е. Жернов, В. А. Мироненко, И. К. Гавич). Выдвигаются новые важнейшие проблемы, связанные с охраной подземных вод от истощения и загрязнения, исследованиями физико-химической природы фильтрации подземных вод через слабопроницаемые разделяющие слои и процессы отжатия воды из глинистых пород, дальнейшим изучением вопросов гидрогеологии глубоких зон , рифтов и т.п. Опубликованы "Гидрогеологическая карта СССР" (масштаб 1:2 500 000), карта подземного стока , карты термальных и минеральных вод СССР, карты грунтовых вод и основные водоносные горизонты, ресурсов подземных вод для целей водоснабжения, орошения ряда крупных районов. Издана коллективная многотомная монография "Гидрогеология СССР", в которой изложены условия залегания, закономерности распространения и другие вопросы региональной гидрогеологии.

За рубежом в развитии гидрогеологии большую роль сыграли французские учёные А. Дарси, Ж. Дюпюи, А. Шези, немецкие — Э. Принц, К. Кейльхак, Х. Хёфер, американские — А. Хазен, Ч. Слихтер, О. Мейнцер.

В СССР исследования в области гидрогеологии ведутся в Институте водных проблем Академии Наук СССР (создан в 1968) и Институте гидрогеологии и гидрофизики Академии Наук Казахстанской ССР (1965), а также в отраслевых институтах: ВОДГЕО (1934), ВСЕГИНГЕО (1939), ВИОГЕМ (1959), ГИДРОИНГЕО (1960) и других, на гидрогеологических кафедрах вузов. Большая роль в развитии гидрогеологии принадлежит лаборатории гидрогеологических проблем Академии Наук СССР им. Ф. П. Саваренского (1940-50).

Подземные воды находятся в верхней части земной коры (литосферы). Наука о подземных водах называется гидрогеология. Она изучает распространение, происхождение, физические и химические свойства, законы движения подземных вод. Осадки, выпавшие на сушу, делятся на три части: 1) испарение, 2) сток и 3) просачивание (инфильтрация) в почву.

Образование подземных вод возможно четырьмя способами:

1) за счет инфильтрации осадков в литосферу образуется основная часть подземных вод (в том числе, минеральные воды КМВ),

2) за счет конденсации паров в порах грунта (подземная роса ночью в пустынях),

3) седиментационная вода одновременно с отложением морских осадков (например, остаток морской воды в глинистых толщах сармата и майкопа г. Ставрополя),

4) т.н. ювенильные воды, выделяемые магмой.

Классификация подземных вод по условиям залегания. В геологическом разрезе по условиям залегания можно выделить следующие подземные воды:

1) почвенные воды, находящиеся в почвенном слое,

2) верховодка образуется над местным водоупором весной или за счет техногенной утечки воды,

3) грунтовые воды на первом от поверхности водоупоре, безнапорные, могут быть загрязнены,

4) межпластовые (ненапорные и напорные-артезианские) воды.

Виды подземных вод. В зависимости от состояния в грунтах выделяют следующие виды воды:

1) Парообразная вода - водяной пар в порах грунта с относительной влажностью W=100%, движение происходит в сторону падения температуры. Таким путем летом в подпольях может быть накопление влаги.

2) Прочносвязанная (адсорбированная, гигроскопическая) вода. Это слой до 10-15 молекул Н2О толщиной 0,1 микрона, покрывающий грунтовые (глинистые) частицы, не растворяет соли, неэлектропроводна, не замерзает при 0оС, а при отрицательных температурах около минус 100оС, имеет высокую вязкость, удаляется при Т≥105о. Содержание прочносвязанной воды зависит в основном от количества глинистых частиц: в песках – 1-2%, в суглинках – 5-10 %, в глинах – 10-25%, в высокодисперсных монтмориллонитовых глинах – до 30 %.

3) Рыхлосвязанная (пленочная) вода удерживается электрическими силами до Р=70000g, имеет плотность=1,0, температуру замерзания минус 1-3-5оС, слабо растворяет соли, перетекает от толстых к тонким пленкам.

4) Свободная вода – капиллярная и гравитационная. Капиллярная вода удерживается в порах капиллярными силами, перемещается за счет разности капиллярных давлений, растворяет соли, замерзает при температуре ниже 0ºС. Высота капиллярного поднятия в глинах достигает 3-4 м, в песках – несколько дм.

Гравитационная вода перемещается под действием силы тяжести (разности напоров).



5) Вода в твердом состоянии (лед), замерзает сначала свободная вода, а затем последовательно все остальные виды воды.

6) Кристаллизационная вода участвует в построении кристаллической решетки минералов (гипс CaSO4∙2H2O). Химически связанная вода входит в состав минералов (лимонит Fe2O3 nH2O, опал SiO2∙H2O, гидроксид CaО Н2O). Эти формы влаги удаляются при Т>100оС.

Химический состав. В подземных водах присутствуют растворенные соли и газы. Основные соли хлориды и сульфаты Na, K, Ca, Mg. В воде растворены газы – О2, Н2, СО2. Именно эти ионы предопределяют многие свойства воды: жесткость, щелочность, соленость, агрессивность. По величине сухого остатка различают воды: 1) пресные - <1 г/л, 2) соленые – 1-30 г/л, 3) рассолы - >30г/л.

Науку о подземных водах, их происхождении, условиях залегания, законах движения, физических и химических свойствах, связях с атмосферными и поверхностными водами называют гидрогеологией.

Для строителей подземные воды в одних случаях служат источником водоснабжения, а в других выступают как фактор, затрудняющий строительство. Особенно сложным является производство земляных и горных работ в условиях притока подземных вод, затапливающих котлованы, карьеры, траншеи, подземные горные выработки: шахты, штольни, туннели, галереи и т.п. Подземные воды ухудшают механические свойства рыхлых и глинистых пород могут выступать в роли агрессивной среды по отношению к строительным материалам, вызывают растворение многих горных поре (гипс, известняк и др.) с образованием пустот и т. д.

Строители должны изучать подземные воды и использовать их в производственных целях, уметь сопротивляться их негативному воздействию при строительстве и эксплуатации зданий сооружений.

Водные свойства горных пород

Горные породы по отношению к воде характеризуются следу­ющими показателями: влагоемкостью, водоотдачей и водопрони­цаемостью. Показатели этих свойств используются при различ­ных гидрогеологических расчетах.

Влагоемкостъ - способность породы вмещать и удерживать в себе воду. В том случае, когда все поры заполнены водой, порода будет находиться в состоянии полного насыщения. Влажность, от­вечающая этому состоянию, называют полной влагоемкостью W n . B:

wfi.b = Л/Рек,

где п - пористость; р ск - плотность скелета породы.

Наибольшее значение W a B совпадает с величиной пористости породы. По степени влагоемкости породы подразделяют на весь­ма влагоемкие (торф, суглинки, глины), слабовлагоемкие (мергель, мел, рыхлые песчаники, мелкие пески, лёсс) и невлагоемкие, не удерживающие в себе воду (галечник, гравий, песок).

Водоотдача W e - способность пород, насыщенных водой, от­давать гравитационную воду в виде свободного стока. При этом считают, что физически связанная вода из пор породы не выте­кает, поэтому принимают W z = W n .„ - W MMB .

Величина водоотдачи может быть выражена процентным от­ношением объема свободно вытекающей из породы воды к объе­му породы или количеством воды, вытекающей из 1 м 3 породы (удельная водоотдача). Наибольшей водоотдачей обладают круп­нообломочные породы, а также пески и супеси, в которых вели­чина W B колеблется от 25 до 43 %. Эти породы под влиянием гравитации способны отдавать почти всю имеющуюся в их порах иоду. В глинах водоотдача близка к нулю.

Водопроницаемость - способность пород пропускать гравита­ционную воду через поры (рыхлые породы) и трещины (плотные породы). Чем больше размер пор или чем крупнее трещины, тем выше водопроницаемость пород. Не всякая порода, которой присуща пористость, способна пропускать воду, например, глина ff: пористостью 50-60 % воду практически не пропускает.

Водопроницаемость пород (или их фильтрационные свойства) характеризуется коэффициентом фильтрации k $ (см/с, м/ч или м/сут), представляющим собой скорость движения подземной воды при гидравлическом градиенте, равном 1.

По величине породы разделяют на три группы: 1) водопро­ницаемые - &ф > 1 м/сут (галечники, гравий, песок, трещиноватые породы); 2) полупроницаемые - k li > = 1...0,001 м/сут (глинистые пески, лесс, торф, рыхлые разности песчаников, реже пористые известняки, мергели); 3) непроницаемые - & ф < 0,001 м/сут (мас­сивные породы, глины). Непроницаемые породы принято назы­вать водоупорами, а полупроницаемые и водопроницаемые - еди­ным термином водопроницаемые, или водоносными, горизонтам

§ 3. Химический состав подземных вод.

Вода как агрессивная природная среда к строительным конструкциям

Все подземные воды содержат в растворенном состоянии определенное количество солей, газов, а также органических соединений.

Растворенные в воде газы (О, СО 2 , СН4, H2S и др.) обусловливают степень пригодности воды для питьевых и технических целей. Количество растворенных солей не должно превышать 1 г/л. Не допускается содержание вредных для здоровья человека химических элементов (уран, мышьяк и др.) и болезнетворных бактерий.

В подземных водах наибольшее распространение имеют хлориды, сульфаты и карбонаты. Подземные воды разделяются на пресные (до 1 г/л растворенных солей), солоноватые (от 1 до 10 г/л), соленые (10-35 г/л) и рассолы (более 35 г/л). Количество и состав солей устанавливается химическим анализом в миллиграммах на литр (мг/л) или в миллимолях на литр (ммоль/л).

Присутствие солей придает воде такие свойства, как жесткость и агрессивность.

Жесткость подземных вод обусловлена количеством растворенных в воде ионов Са 2+ и Mg 2+ и выражается в миллимолях на литр. Различают

1. общую жесткость, вызванную содержанием в воде всех солей кальция и магния: Са(НСО 3) 2 ; Mg(HCO 3) 2 , CaSO4, MgSO 4 , CaCl 2 , MgCI 2 ;

2. карбонатную, или временную , обусловленную содержанием бикарбонатов кальция и магния, удаляемых кипячением (выпадают в °садок в виде карбонатов);

3. некарбонатную, или постоянную , остающуюся в воде после устранения бикарбонатов. По общей жесткости природные воды разделяют на 5 групп:

Оценка воды Жесткость, ммол/л

Очень мягкая до 1,5

Мягкая 1.5-3,0

Умеренно мягкая 3-6

Жесткая 6-9

Очень жесткая выше 9

Жесткие воды образуют накипь в котлах, в них плохо образуется мыльная пена и т. п.

Агрессивность подземных вод выражается в разрушающем воздействии растворенных в воде солей на строительные материалы, в частности на портландцемент. В существующих нормах, оценивающих степень агрессивности воды по отношению к бетону, кроме химического состава воды, учитывается коэффициент фильтрации пород.

1. Агрессивность по содержанию бикарбонатной щелочности (агрессивность выщелачивания) определяется по величине карбонатной жесткости. Поземная вода агрессивна к бетону при карбонатной жесткости 4-2,14 ммоль/л (в зависимости от типа цемента в составе бетона),а при более высоких показателях вода становится неагрессивной.

2. Агрессивность по водородному показателю (общекислотная агрессивность) оценивается по величине рН. В пластах с высокой водопроницаемые она агрессивна при рН=6,7-7,0, а в слабопроницаемых- при рН=5

3. Агрессивность по содержанию свободной углекислоты (СО 2) (углевая агрессивность) устанавливается по содержанию диоксида углерода Различают свободную, связанную и агрессивную углекислоту.

Агр ессивная углекислота определяется экспериментально и расчетом, вода считается агрессивной при содержании углекислоты >15 ммол/л в хорошо проницаемых грунтах и >55 ммоль/л для слабоводопроницаемых грунтов.

4. Агрессивность по содержанию магнезиальных солей определяется содержанию иона Mg 2+ . В слабофильтрующих грунтах воды агрессивны при содержании магния >2000 мг/л, а в остальных грунтах > 1000мг/л.

5. Агрессивность по содержанию едких щелочей оценивается по количеству ионов К + и Na + . Воды агрессивны к бетону при содержании этих ионов >80 г/л в хорошо водопроницаемых и >50 г/л в слабопроницаемых грунтах.

6. Сульфатная агрессивность. Этот тип агрессивности определяется по содержанию ионов SО 4 2- . В высоко водопроницаемых грунтах она зависит от содержания иона С1 - . При содержании сульфат-ионов менее 250-300 мг/л во всех грунтах вода неагрессивна, во всех остальных случаях - агрессивна, даже к специальным цементам.

Агрессивность по содержанию хлоридов, сульфатов, нитратов и других солей и едких щелочей связана обычно с искусственными источниками загрязнения грунтовых вод при суммарном содержании (агрессивных ионов >10 г/л.

Агрессивность подземных вод устанавливают сопоставлением данных химических анализов воды с требованиями СНиП 2.02.11-85. Для борьбы с ней используют специальные цементы, производят гидроизоляцию подземных частей зданий и сооружений, понижают уровень грунтовых вод устройством дренажей и т. п.

4. Классификация и характеристика типов подземных вод

Подземные воды классифицируют по гидравлическому признаку - безнапорные и напорные, и по условиям залегания в земной коре-верховодка, грунтовые воды, межпластовые воды (рис. 50). Помимо этих главных типов существует еще ряд подземных вод, таких как трещинные, карстовые, минеральные и т.

Верховодка. Верховодкой называют временные скопления вод в зоне аэрации, которые располагаются над горизонтом грунтовых вод, где часть пор грунта занята воздухом. Верховодка образуется над небольшими водоупорами типа линзы глин и суглинков в песке, над прослойками более плотных пород и т. д. (рис. 50), при инфильтрации воды в период обильного снеготаяния, дождей. В остальное время вода верховодки испаряется и просачивается в нижеследующие грунтовые воды.

В целом для верховодки характерно: временный, чаще сезонный характер, небольшая площадь распространения, малая мощность и безна-порность. Залегая в пределах подземных частей зданий и сооружений (подвалы, котельные и др.), она может вызвать их подтопление, если заранее не были предусмотрены меры дренирования или гидроизоляции.

При инженерно-геологических изысканиях, проводимых в сухое время года, верховодка не всегда обнаруживается. Поэтому ее появление для строителей может быть неожиданным.

Грунтовые воды. Грунтовыми называют постоянные во времени и значительные по площади распространения горизонты подземных вод залегающие на первом от поверхности водоупоре.

1. Грунтовые воды безнапорны, имеют свободную поверхность, которая называется зеркалом (или уровень). Положение зеркала в какой-то мере отвечает рельефу данной местности. Глубина залегания уровня от поверхности различна - от 1 до 50 м и более. Водоупор, на котором лежит водоносный слой, называют водоупорным ложем, а расстояние от него до

уровня подземных вод-мощностью водоносного слоя (рис. 51).

2. Питание грунтовых вод происходит за счет атмосферных осадков,

водоемов и рек. Территория питания совпадает с площадью распространения грунтовых вод. Грунтовая вода открыта для

загрязнения различными вредными примесями.

3. Грунтовые воды образуют потоки, которые направлены в сторону уклона водоупора (рис. 51).

4. Количество, качество и глубина залегания грунтовых вод зависят

геологии местности и климатических факторов.

В практике строительства чаще всего приходится встречаться именно

грунтовыми водами. Они создают большие трудности при производстве

строительных работ (заливают котлованы, траншеи и т. д.) и мешают

нормально эксплуатировать здания и сооружения.

Межпластовыми водами называют водоносные горизонты, располагающиеся между водоупорами. Они бывают ненапорными и напорными, последние иначе называют артезианскими.

Межпластовые ненапорные воды встречаются сравнительно редко,

водоносные слои заполнены водой лишь частично (рис. 51).

Напорные (артезианские) воды связаны с залеганием водоносных

слоев под наклоном к горизонту или в виде изгиба (складки) (рис. 50

и 52). Площадь распространения напорных водоносных горизонтов называют артезианским бассейном.

Отдельные части водоносных слоев залегают на различных высотных

отметках. Это и создает напор подземных вод. Область питания, как

правило, не совпадает с площадью распространения межпластовых вод.

Напорность вод характеризует пьезометрический уровень. Он может

быть выше поверхности земли или быть ниже ее. В первом случае, выходя

через буровые скважины, вода фонтанирует, во втором - поднимается

лишь до пьезометрического уровня.

Многие артезианские бассейны, например Доно-Донецкая впадина, занимают огромные площади, содержат ряд водоносных горизонтов являются важным источником питьевой воды.

Как таковая наука о Подземных водах появилась 1674 году после публикации ученым П. Перро своей работы «Происхождение источников», а свое официальное название она получила после издания в 1802 году Ж. Лемарком книги «Гидрогеология, или Исследование влияния воды на поверхность земного шара».

Как утверждают ученые объем Подземных вод составляет 60 000 000 км3, или 3,83% от всего объема гидросферы. (источник Мировой водный баланс…, 1974; Гавриленко, Дерпгольц, 1971; и др.)

Подземные воды — это …

Для более точного понимания — что есть подземные воды как таковые, приведем несколько определений из авторитетных словарей и энциклопедий.

Горная энциклопедия

Подземные воды … — воды, находящиеся в толщах горных пород верхней части земной коры в жидком, твёрдом и парообразном состоянии. П. в. являются частью Водных ресурсов. B областях существования П. в. температура колеблется от -93 до 1200°C, давление — от нескольких до 3000 МПa …

A. A. Kоноплянцев.

Горная энциклопедия. М.: Советская энциклопедия. Под редакцией Е. А. Козловского. 1984 — 1991

Экологический словарь

Подземные воды — воды, в том числе минеральные, находящиеся в подземных водных объектах (Водный Кодекс Российской Федерации)

EdwART. Термины и определения по охране окружающей среды, природопользованию и экологической безопасности. Словарь. 2010

Словарь по географии

Вода, находящаяся ниже земной поверхности в толще горных пород и в почве в любых физических состояниях .

Словарь по географии. 2015

Происхождение подземных вод

Происхождение Подземных вод издавна будоражило воображение лучших умов человечества. Высказывались самые смелые предположения и гипотезы, и ради справедливости необходимо отметить, что многие из них оказались верными. Существует обоснованное предположение, что подземные воды использовались в засушливых районах Ближнего Востока, средней Азии и Китая уже в 3000-2000 г. г. до нашей эры. Первую, из дошедших до нас, гипотез о происхождении подземных вод относят к VII веку до н. э. Она принадлежат древнегреческому философу Фалесу. Позднее, свое согласие с этой гипотезой выразил и Платон. Древнегреческие философы предполагали, что подземные воды происходили из охлажденного в подземных пещерах воздуха.

Подземные воды существуют в различных агрегатных состояниях. Они накапливаются в толщах земной коры и движутся там различными способами по пустотам, порам и трещинам. В местах присутствия водонепроницаемых пород они скапливаются, образуя сообщающиеся между собой подземные водохранилища — подземные водоносные системы, опоясывающие весь земной шар.

Подземные воды имеют самое разнообразное применение в хозяйственной деятельности человека. Во-первых это источник пресной воды, во-вторых подземные воды — источник многих важных для человека минералов, всем хорошо известны лечебные минеральные воды. Горячие или геотермальные воды, которые мы подробно рассмотрели в статье , или горячие воды Земли, являются не только источниками полезных минералов, но и дарят человеку доступную и бесплатную геотермальную энергию.

Виды подземных вод

О. Мейнцер (1935) классифицировал воды находящиеся в горных породах таким образом:

  • Воды в свободном состоянии, способные к самостоятельным формам движения, различным, в зависимости от конкретного вида воды:
    * пар (парообразная);
    * гравитационные воды (просачивающаяся капельножидкая, подземные потоки);
    * в надкритическом состоянии — подземные воды с температурой и давлением выше критических.
  • Воды в связанном состоянии, не способные к самостоятельным формам движения, без перехода в свободное состояние (в другие виды воды):
    * вода, химически связанная с кристаллической структурой минералов;
    * вода, физико-химически и физически связанная с поверхностью минеральных частиц (скелета) горных пород;
    * вода переходного состояния от связанной к свободной, в том числе капиллярно-связанная;
    * иммобилизованная (вакуольная) вода;
    * вода в твердом состоянии .

По интенсивности водообмена подземные воды можно разделить на такие категории:

  • Зона активного водообмена – 300 / 500 метров от поверхности земли, время обновления вод от нескольких лет до нескольких десятков лет;
  • Зона замедленного водообмена – 500 / 2000 метров от поверхности земли, время обновления вод десятки и сотни лет;
  • Зона пассивного водообмена – более 2000 метров от поверхности, время обновления вод происходит на протяжении миллионов лет.

Классификация подземных вод по степени минерализации:

  • Зона активного водообмена – 300 / 500 метров от поверхности земли, преобладают пресные воды с содержанием солей до 1 грамма/литр;
  • Зона замедленного водообмена – 500 / 2000 метров от поверхности земли, солоноватые воды с содержанием солей от 1 до 35 г/л;
  • Зона пассивного водообмена – более 2000 метров от поверхности, соленые воды по степени солености близкие к морской воде более 35 г/л.

Классификация подз. вод в зависимости от вида пустот, которые они заполняют:

  • Поровыe подз. воды — в песках, галечниках … ;
  • Трещинныe подз. воды — в гранитах, песчаниках и других скальных породах;
  • Карстовыe подз. воды — воды находящиеся в растворимых породах (гипсах, известняках, доломитах …).

Классификация подземных вод по температуре (Щербаков, 1979)

Важным фактором является температура Подземных вод. Этот вопрос рассматривался в статье «Термальные источники, или горячие воды Земли». Отметим интересный факт — на больших глубинах вода достигает состояния так называемой «водяной плазмы». Это состояние характеризуется тем, что, с одной стороны, вода перестает быть «водой», а с другой и не стала водяным паром. Происходит это, когда за счет высоких температур, скорость движения молекул сравнима со скоростью движения молекул водяного пара, а плотность остается как у воды в жидком состоянии. Такая пароводяная смесь часто выбрасывается на поверхность в виде так называемых Гейзеров.

Переохлажденные подземные воды

  • Степень нагретости: исключительно холодные.
  • Шкала температур: ниже 0 °С.
  • переход в твердое состояние.

Холодные подземные воды — тип №1

  • Степень нагретости: весьма холодные.
  • Шкала температур: ниже 0-4 °С.
  • Физические и биохимические критерии температурных границ: 3,98°С - температура максимальной плотности воды.

Холодные подземные воды — тип №2

  • Степень нагретости: умеренно холодные.
  • Шкала температур: ниже 4-20 °С.
  • Физические и биохимические критерии температурных границ: единица вязкости (сантипуаз) определена при температуре 20°С.

Термальные подземные воды — тип №1

  • Степень нагретости: тёплые.
  • Шкала температур: ниже 20-37 °С.
  • Физические и биохимические критерии температурных границ: температура человеческого тела - около 37°С.

Термальные подземные воды — тип №2

  • Степень нагретости: горячие.
  • Шкала температур: ниже 37-50 °С.
  • Физические и биохимические критерии температурных границ: оптимальная температура для роста бактерий.

Термальные подземные воды — тип №3

  • Степень нагретости: весьма горячие.
  • Шкала температур: ниже 50-100 °С.
  • Физические и биохимические критерии температурных границ: переход в парообразное состояние.

Перегретые подземные воды — тип №1

  • Степень нагретости: умеренно перегретые.
  • Шкала температур: ниже 100-200 °С.
  • Физические и биохимические критерии температурных границ: термометаморфизм (гидролиз карбонатов с выделением С02 , генерация абиогенного H2S и др.).

Перегретые подземные воды — тип №2

  • Степень нагретости: весьма перегретые.
  • Шкала температур: ниже 200-372 °С.
  • Физические и биохимические критерии температурных границ: процессы углефикации органического вещества и формирования углеводородов.

Безнапорные воды:

  • Грунтовые воды и верховодка – это первые от поверхности земли водоносные горизонты или по другому водоносные слои, залегающие на первом водоупорном слое (в отличие от верховодки грунтовые воды обычно связаны с наличием регионально-распространенного пласта слабопроницаемых пород, эти воды питают колодцы);
  • Межпластовые воды, водоносные системы – подземные водохранилища, часто сообщающиеся между собой, у которых водонепроницаемые слой находятся как сверху, так и снизу;
  • Трещинные и трещинно-карстовые подземные воды.

Напорные воды или Артезианские воды

Напорные воды или Артезианские воды – это артезианские бассейны вода в которых находится под напором/гидравлическим давлением между двумя водонепроницаемыми породами.

Ювенильные воды

Так же хотим сделать акцент на так называемые Ювенильные воды. Под которыми подразумеваются воды, происхождение которых обусловлено процессами синтеза водорода и кислорода в магматических расплавах. Далее, эти воды, поднимаясь вверх, смешиваются с другими видами Подземных вод. Гипотеза о Ювенильных водах впервые была сформулирована в 1902 году австрийским геологом Э. Зюссом.

Необходимо отметить тот факт, что в зонах вечной мерзлоты подземные воды верхнего уровня заморожены и находятся в твердом состоянии.

Одной из форм Подземных вод является так называемая «физически связанная вода». Такую формулировку она получила поскольку взаимодействуя с частицами породы притягивается ими. Чем меньше частицы тем больше воды они могут притягивать.

Много под землей и обычных вод, которые находится там благодаря гравитации, в следствии чего и называются «гравитационными водами». Среди них можно выделить два вида — напорные и безнапорные воды.

Физические свойства подземных вод

Выделяют такие физические свойства подземных вод:

  • Мутность и прозрачность;
  • Цветность;
  • Запах и вкус;
  • Температура;
  • Вязкость;
  • Радиоактивность.

Тема Подземных вод весьма обширна и очевидно, что отобразить ее в рамках одной статьи просто невозможно. Мы постарались выделить наиболее важные, с нашей точки зрения, моменты. Мы будем рады если этот материал подтолкнет вас к более детальному изучению столь интересной темы.

Лекция 3. ОСНОВЫ ГИДРОГЕОЛОГИИ

1. Понятие о подземных водах

2. Классификация подземных вод

3. Динамика подземных вод

4. Приток подземных вод к водозаборным сооружениям

5. Борьба с грунтовыми водами

ПОНЯТИЕ О ПОДЗЕМНЫХ ВОДАХ

ВОДА – это чудо природы, самое необходимое из существующего вещества на Земле. От воды зависит наше благополучие, сам факт существования живого на Земле. Организм человека в весовом отношении в основном состоит из воды. У новорожденного – 75%, у взрослого – 60% от массы тела.

Вода на Земном шаре находится в очень сложных взаимоотношениях с живым. Она необходима не только для поддержания жизни, она еще и продукт живого. Вода вездесуща, повсеместна и многолика.

Замечательный ученый, создатель геохимии В.И. ВЕРНАДСКИЙ писал: «Вода стоит особняком в истории нашей планеты, нет природного тела, которое могло бы сравниться с ним по влиянию на ход основных, самых грандиозных геологических процессов…»

Воды, находящиеся в верхней части ЗЕМНОЙ КОРЫ и залегающие ниже поверхности земли, называют ПОДЗЕМНЫМИ. Изучением подземных вод занимается раздел геологии – ГИДРОГЕОЛОГИЯ.

Гидрогеология – это наука о подземных водах, их происхождении, свойствах, формах залегания, характере и законах движения, режиме и запасах. Она изучает способы использования подземных вод, методы их регулирования.

ПОДЗЕМНАЯ ВОДА образует подземную ГИДРОСФЕРУ, по массе заключенной в ней воды она соизмерима с Мировым Океаном.

Практическое значение подземных вод в жизни человека огромно. Подземная вода является одним из основных существующих и перспективных источников водоснабжения, так как имеет ряд достоинств:

1. Обладает белее высоким качеством, чем поверхностные воды (волы рек, озер, водохранилищ).

2. Не требует дорогостоящей очистки.

3. Лучше защищены от поверхностных загрязнений.

4. Повсеместно распространены.

Подземные воды широко используются для водоснабжения, так в США они составляют около 20% всей потребляемой воды, в Германии – 75%, в Бельгии – 90%. В России так же используются подземные воды для центрального водоснабжения. Так в пределах Москвы и московской области пробурено примерно 1000 артезианских скважин.

Но, при эксплуатации подземных вод необходимо иметь в виду, что если расход воды из подземных емкостей идет быстрее, чем ее запасы восполняются за счет влаги, просачивающейся в земли из атмосферы, то уровень подземных вод понижается, а это часто вызывает неблагоприятные последствия.

В течение нескольких десятилетий уровень подземных вод в Москве понизился более чем на 40 м, Санкт- Петербурге – на 50 м, Киеве – на 65 м, Лондоне – более чем на 100 м, в Париже – на 120 м, в Токио – на 150 м.

Причем, если воду забирают с пластов сравнительно рыхлых пород, то это может привести к проседанию массива пород. Так, Мехико за 40 лет опустилась на 7 метров.

Необходимо также знать, что подземные воды обладают и отрицательными факторами, которые особенно касаются строительства.

Подземные воды:

Осложняют производство работ в условиях притока подземных вод;

Ухудшают несущую способность пород, как основания сооружений;

Приводят к удорожанию строительства в связи с устройством гидроизоляции и дренажа.

Подземные воды находятся в неразрывной связи и взаимодействии с горными породами, в которых они формируются, накапливаются и перемещаются.

В горных породах подземная вода может быть в виде ХИМИЧЕСКИ СВЯЗАННОЙ, ПАРООБРАЗНОЙ, ФИЗИЧЕСКИ СВЯЗАННОЙ, СВОБОДНОЙ, и ТВЕРДОЙ.

ХИМИЧЕСКИ СВЯЗАННАЯ вода – это почти не «вода», она входит в состав кристаллической решетки минералов и принимает участие в строении кристаллической решетки. В СОДЕ ее до 64%, в минерале МИРАБИЛИТ – 55%. Выделить эту воду без разрушения кристаллической решетки не удается, Исключением является минерал ЦЕОЛИТ – «ПЛАЧУЩИЙ КАМЕНЬ» - из него кристаллизированную воду можно удалить нагреванием.

ПАРООБРАЗНАЯ вода – это водяной пар, заполняющий вместе с воздухом все, не заполненные водой поры и трещины в горных породах в пространстве между земной поверхностью и постоянным уровнем подземных вод. В определенные слои толщи земной коры пар может проникать по трещинам и пустотам из атмосферы или из глубоких недр земли от горячих водных растворов. В определенных условиях пары могут конденсироваться и переходить в жидкое состояние. В верхних слоях земной коры сосредоточена лишь незначительная часть парообразной воды Земли. В глубоких недрах пара гораздо больше, там он горячий.

ФИЗИЧЕСКИ СВЯЗАННАЯ вода – это вода, образующаяся на поверхности частиц горных пород путем КОНДЕНЦАЦИИ и АДСОРБЦИИ парообразной воды. Здесь выделяют ГИГРОСКОПИЧЕСКУЮ и ПЛЕНОЧНУЮ воду.

ГИГРОСКОПИЧЕСКАЯ вода – это вода, прочно удерживаемая на поверхности частиц МОЛЕКУЛЯРНЫМИ и ЭЛЕКТРИЧЕСКИМИ силами. Она может быть удавлена только при температуре 105-100 0 С. В зависимости от количества удерживаемой на частицах горных пород гигроскопической воды, различают гигроскопичность НЕПОЛНУЮ (1) и МАКСИМАЛЬНУЮ (2).

Наличие гигроскопической воды в породе не глаз не заметно. В месте с тем МАКСИМАЛЬНАЯ гигроскопичность тонкозернистых и глинистых пород может достигать 18%, в более крупнозернистых породах она падает до 1% от массы сухого вещества.

ПЛЕНОЧНАЯ вода образуется на частицах горных пород при влажности, превышающей максимальную гигроскопичность (3,4).

Поверхность частиц как бы обволакивается пленкой воды толщиной нескольких молекулярных слоев, покрывающих гигроскопическую воду.


Наличие пленочной воды в породах заметно на глаз, так как породы приобретают при этом более темную окраску. Пленочная вода способна передвигаться как жидкость от более толстых пленок к более тонким пленкам.

Максимальное содержание пленочной воды составляет:

Для песчаных пород - до 7%;

Для глинистых пород – до 45%.

СВОБОДНАЯ вода – это основная масса подземных вод. Она может перемещаться либо вниз по уклону – это ГРАВИТАЦИОННАЯ вода, либо вверх – КАПИЛЛЯРНАЯ вода.

Свободная вода не подвержена действию сил притяжения к поверхности частиц горных пород. Гравитационная вода подчиняется действию силы тяжести и способна передавать ГИДРОСТАТИЧЕСКОЕ давление. Гравитационная вода перемещается через пористое пространство и трещины в горных породах. В ЗОНАХ НАСЫЩЕНИЯ гравитационная вода образует ВОДОНОСНЫЕ ГОРИЗОНТЫ.

КИПАЛЛЯРНАЯ вода заполняет капиллярные поры и тонкие трещины в горных породах и удерживается силами поверхностного натяжения. Поднимается она снизу вверх, т.е. в направлении, противоположном действию силы тяжести.

ТВЕРДАЯ вода – вода в виде кристаллов, прослоек и линз льда – широко распространена в зоне многолетней мерзлоты.

Наличие тех или иных во многом предопределяет.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png